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The diffusion of a strong magnetic field in a collisional plasma is important in many 
problems, such as plasma confinement by a magnetic field, magnetic dispersal of films, trans- 
forming during an electrical explosion into the plasma state, discharges arising on the sur- 
face of an insulator (magnetic pinch discharges) when a magnetic flux passes through it, etc. 

The expansion into a vacuum of a thermally and electrically conducting gas formed from 
an electrical explosion of a plane conductor was studied in [i]. However, only the initial 
stage of the explosion was studied, since the electrical conductivity was assumed to decrease 
with increasing temperature. 

In the present paper we consider the plane diffusion of a transverse magnetic field from 
a vacuum into a dense plasma in the collisional regime. A magnetic pinch discharge on the 
surface of an insulator can be considered as a special case of diffusion in a plasma of in- 
finite density. We consider strong magnetic fields such that the plasma can be assumed to 

be completely ionized. 

In the diffusion of a magnetic field in a dense plasma, three basic stages can be iden- 
tified: i) Radiation losses are small compared to Joule heating and the principal effects in 
limiting the skin-effect magnetic field are the electron thermal conductivity and thermoelec- 
tric effects (Nernst effect); 2) radiation losses begin to balance the Joule heating and a 
steady-state regime results; 3) radiation heats s inner layers of the plasma, thermal dif- 
fusion is determined by the radiative thermal conductivity, and the coefficients of magnetic 
diffusion and radiative thermal diffusivity become of the same order of magnitude. 

We consider all quantities to be dependent on the coordinate X and time t, where the 
magnetic field H and electric field E are perpendicular to each other and to the X axis, and 
the characteristic times in the problem are large compared to gasdynamical times, such that 

the total pressure in the system can be equalized: 

p § H218u = E ~ / 8 ~  ; ( 0 . 1 )  

where p is the thermal pressure and Ho is the magnetic field strength on the boundary with 

the vacuum. 

The equations for the magnetic and electric fields and the thermal balance equation of 

the plasma have the following forms (in Lagrangian variables) 

OE_ t (d~ ~ dO], O H _  4~ ], " ~A o~ 
-F--S] o x ox  7 E=-~ --~-~. (0.2) 

d~ p dO = _  ~ + ] E _  j ,  Q or ~ r h 

where p is the density of the plasma, E is the internal energy, o, X, BA are the transverse 
electrical conductivity, thermal conductivity, and thermoelectric coefficient, respectively, 
J is the volume power of the radiation loss, and Q is the heat flux density. We assume that 
at the initial time the magnetic field is zero inside the plasma and that the plasma is ini- 

tially homogeneous. 

i. Diffusion of a Magnetic Field in a Hydrogen Plasma at Small Values of the Time. First 
we consider the diffusion of a magnetic field in a plasma for small times when radiation is 
unimportant and the electron transport coefficients play the principal role. In this case, 
the magnetic diffusion and thermal diffusivity coefficients become of the same order of mag- 
nitude when the degree of magnetization of the electrons is such that ~eTe ~ i. We choose 
as units of temperature and electron density N the following quantities 
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[NI = $--~/[T], 
where z is the ion charge and ~c is the Coulomb logarithm. 

(%V8.jo.o, 
and introducing the dimensionless functions 

T = [ T  lo@), N=IN]n(~) ,  H = / / o  h@), 
e~ 0,1 I~ Z~ 0o2 ( H2 /8~'~ 0"85 

C0,3 V T  ~ @) , 

Q = ] /~  q @), X = ( / /8/8~)o.~ 

Using the variable 

x @ ,  

(1.2) 

(1.3) 

(1.4) 

the system of equations (0.i) and (0.2) can be rewritten in the form 

n O ( l + l / z ) + U = l ,  ~ =  ,---7-- d~ ,q ~ ' 

(1.5) 

where ~, B, y depend on the degree of magnetization 

3h 67,2 
~ O ) e T e  ~ 2n  - -  

and are given by the approximate relations [2] 

~ = 1  A ' ~ -  A ' 

(1.6) 

h : p + 51g ~ + 50. ( 1 . 7 )  

where the notation for the coefficients in (1.7) follows that in [2]. 

The boundary conditions for the system (1.5) are: 

~(0)  = 1, h (oo)  = 0 ,  ,~(oo) = ~ ,  q(0)  = ~(oo)  = 0.  ( 1 . 8 )  

Using (1.5) and the boundary conditions (i.8) we can obtain expansions for n(~), @(~), 
q(~) as ~ § 0 by taking into account that when ~ § O, we have n + 0, y § ~, and by using 
analytical expressions for the kinetic coefficients for strong magnetization [3]: 

n N ~ k ,  0 ~ 4 1 ~ - 2 ,  q ~ , ~ - 2  k = 9 _ z : , + ( S ] / ~ _ 7 )  z + i 0  " ( 1 . 9 )  

T h i s  s t a g e  o f  d i f f u s i o n  p l a y s  a r o l e  o n l y  i n  a h y d r o g e n  p l a s m a  (z  = 1 ) .  F o r  z > 1 t h e r e  a r e  
large radiative losses, and the transition to the steady-state regime occurs early, when con- 
dition (0.I) is still not satisfied and the inertia of the material cannot be neglected. 

We consider the solution of (1.5) for z = i. In this case the expansion (1.9) gives 

and the temperature at the boundary with the vacuum goes to infinity. The numerical solu- 
tion of (1.5) for n~ = ~ is shown in Fig. i. The magnitude of the electric field on the bound- 
ary with the vacuum is shown as a function of n~ inFig. 2. The electric field so approaches 
the constant value so ~ 2.04 at large n~, and at small n~ it becomes proportional r~o n~ , as 

would be expected. 

However, when 
( m~~ c,,~ 

noo << ~--ff ] i z 

(M is the ion mass) the ion thermal conductivity is more important than the electron thermal 
conductivity and the plasma can be considered as isothermal with temperature @ = i/[n~(l + 
i/z)]. We transform to the new variables 

$' = @~/4(t + i lz)~,  ~' = 03/%, n '  = @(l -6 l h ) n ,  x '  = @31%, 

and the system of equations (1.5) takes the form 
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dh 3 e' de' 3 ]/2-~ ~, (1 § h ~) , dz' t / ' ( l - -h2) .  
d~" 4 ( t - h D '  d~' 4 ~ ( i _ h ~ )  - - - - - ~ e '  d~--;= ( 1 . 1 0 )  

The numerical solution of (i.i0) with the boundary conditions hf0) = i, h(~) = s(~) = 0 is 
shown in Fig. 3. Note that c(0) = 1.58 closely agrees with @~$4s(0) of Fig. 2 in the limit 
n~ ~ 0, @~ § ~: (@~/4s(0))n~§ = 1.51. This means that the isothermal approximation is valid 
in a low-density plasma even when only the electron transport coefficients are taken into 
account. 

2. Steady-State Stage. As the thickness of the discharge region increases, the rate 
of Joule heating per unit volume decreases and the radiation losses, which are determined by 
the temperature (i.i) and density (l.2),remain the same. Therefore, as time increases the 
discharge goes into a steady-state phase when the Joule heating is balanced by radiation 
losses. It is easy to see that in this stage the thickness of the discharge region is small 
compared to the radiation path length and we can neglect surface effects in treating the radia- 
tion. 

For strong fields in a hydrogen plasma, bremsstrahlung plays the principal role, and its 
power is given by 

1/2~-~N~e6 
f ~m mc3~" 

Dimensionless quantities for this stage of the discharge are conveniently chosen according to 
(1.1)-(1.4), where in place of the time t we use the variable 

T=8~jB([T] , [N]) .  (2.1) 

In the steady-state case, the second equation of (1.5) becomes 

e = c o n s t ,  (2 .2 )  

while the last equation can be written in the form 

eq V ~  ~ d~ 
d'-'~ = -- m (2 3) 

V ~  a~' 

and the other equations remain unchanged. The solution of (1.5) is shown in Fig. 4 for this 
case. The electric field has the value s = 1.16. 

For plasmas with atomic numbers zo > i, recombination and line-emission are important 
effects. For the temperatures and densities (i.i), (1.2) and megagauss magnetic fields, the 
volume radiation of the plasma can be approximated by [4] 

N~ z~ el~ ( 2 . 4 )  J~ (T, N) = ~ V ' - ~ - 7  ~---~' 

where R is a dimensionless constant. Then we use in (1.5) analogous with (2.1) for the di- 
mensionless quantities (1.1)-(1.4) the following quantity in place of t, in analogy with 

(2.1): 
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= 8MR([T],[N]) (2.5) 

and Eq. (1.5) remainsunchanged except for the second which becomes (2.2) and the last, which 
will have the form 

d q  =--n/FO e �9 d h  
~--~ V ~  ~" (2.6) 

The soZution of (1.5) for this case wffth the coefficients (1.7) is shown in Fig. 5 for z = ~. 
The electric field in this case is ~ = 5.58. A discharge of the type of Fig. 5 can also be 

interpreted as a magnetic pinch discharge at the surface of an insulator, We note that at 
large z the temperature on the plasma--vacuum boundary goes to zero (unlike the case z = I). 
This behavior follows from expansions (1.9) and is due to the more significant (compared to 
the case z = i) effect of thermoelectric heat fluxes on the thermal balance near the bound- 
ary ~ = 0. 

We present typical numerical values of the quantities for discharges in hydrogen and 
organic glass (H8C50~) in magnetic fields in the megagauss range. 

For hydrogen in megagauss fields the Coulomb logarithm is I c = 7.5, and 

[T] = 74 e V . H ~ ' 4 ( M G ) ,  [X] = 3 ,3 . t02~  cm -3 . H ~ ' 6 ( M G ) .  

In Fig. I the unit of distance is 

ix ]  = o. 9 cm gt ( M s ) ,  

and the unit of electric field is 
kV 07 

In] = t . 9 - -  .Ho' ( MG 
c m  

In Fig. 4 the unit of distance is [X] = 0.095 cm/Ho (MG) and the unit of electric field is 

[E] = 3 , 9 c ~ . H ~ ' 4  ( M G ) .  

If we assume that the start of the transition from the regime of Fig. 1 to that of Fig. 4 is 
determined by the equality of the electric field E~ of Fig. 4 and E of Fig. i, and the end of 
the transition is determined by the equality of the field Eo of Fig. 1 and E of Fig. 4, then 
the characteristic initial and final times of the transition will be given by 

t i = 0.35 ~ sec /H ~  '~ (MG), tf  = 0.75 ~sec/H~ '~ (MG). 

The time corresponding to the start of the regime of Fig. l, when the inertia of the material 
can be neglected and condition (0.i) begins to be satisfied, is 

t N 6 . t 0 - 3 ~ s e c / H 0  (MG). 

For organic glass in megagauss fields, the average ionic charge is given by z = Enizia/n, 
where n i is the density of ions with charge z i (cf [5]). The Coulomb logarithm I c ~ 5.5, and 
the units of temperature and density in Fig. 5 are 

[T] = 120 e V . H ~  '4 ( MG ), [N] = 2 ,1 .10  ~~ cm-3.H~'S ( MG ). 

The q u a n t i t y  z ~ / z ,  w h i c h  i s  t o  be  s u b s t i t u t e d  i n  ( 2 . 4 ) ,  i s  g i v e n  by  [4]  Zo/Z" = ~ n i z ~ i / n ,  and  
the numerical constantR can be obtained using radiation tables for low-density plasmas [5]. 

4 
For H8C~02 we have Zo/Z ~ 350, R ~ 50 in the temperature region of interest to us. With 
these values, the unit of distance in Fig. 5 is 
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and the unit of electric field is 

Fig. 6 

IX] = 0.80 .  iO -2 cn~/~r ~ ( MG ), 

kV -*1 '~ [El - -  74 ~ . n o '  ( MG ). 
Cm 

The time corresponding to the start of the regime of Fig. 5, when the Joule heating begins 
to be balanced by radiation losses and the inertia of the material can be ignored, is given 

by : 

t N 0 .2 .10-8  ~sec /Ho(MG).  

3. Magnetic Diffusion Accompanied by Radiative Thermal Conduction. For dense plasmas or 
insulators, radiation from the steady-state regions of the discharge gradually heats up the 
inner layers, increasing their electrical conductivity, and the magnetic field begins to dif- 
fuse inward, heating the plasma, and heat transport to the neighboring layers occurs. This 
is how the next stage of magnetic field diffusion occurs; we consider the diffusion of a 
strong field in organic glass. 

We consider a gradual dependence of the equation of state, radiation path length %, and 
magnetic diffusion coefficient ~ on temperature: 

pip = 0,17 T1.Wp ~176 ~ = 2.i0-gT2,Wpl,Ss ' ~ = OA7/(To.S6pO.1~), 
where the adiabatic exponent is p/~p + I = 4/3 and the system of units is g, cm, ~sec, and eV 
for temperature. We choose units of temperature IT] and density [p] so that the thermal dif- 
fusivity and magnetic diffusion coefficients are of the same order 

(~sB [~rp~ ([~,], [p])/(goVS~) = • ([7], h i )  

(where ~SB = 1"03"10-6 is the Stefan--Boltzmann constant) and the thermal pressure is the 
same order as the magnetic pressure 

p ([7], [Pl) = H2o/8n. 
Then 

g HI,3~ [7] = tTeV "H ~ [p] = 5 . 7 . i 0  -3---~. o (MG).  
an] 

Using the self-modeling variable 

1/t  (~se~ Zo~ (MG) 

and introducing the dimensionless functions 

T = [ T ] 0 ( ~ ) ,  p = b ] n ( ~ ) ,  H = H o h ( ~ ) ,  E =  ~.8kV Ho~ 
ClT----I" V t  (/JSeC) E (~), 

~ / t  (psee) 1 ~4 H o ( X = 0.t8 em .~g:~ (Me) x (~), Q = L8. t0~cmW~ Vt-~MG) q (~), 
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the system of equations (0.i) and (0.2) can be written in the form 

O~'~9/n T M  + h ~ = l ,  ~ = ~ \ d~ 
dn 

dh 1 O~ t6 O ~'x~ dO ( 3 .  I) 
d$ 2 ] / ~  n ~ ' q = 3 no.s~ d~ ~ 

dq e ~ O ~ ~. { 0 ~ dO 
d-i- = 4~ no.sr + 0 .59r  \ 3  no,o 6 d~ 

01'19 dn ~ d _ 5 . x = t _  - 
nt~ d ~ ] '  d~ n "  

From (3.1) and the boundary conditions h(0) = i, s(0) = const, q(O) = const, we have the 
following expansions for @(~) and n(%): 

The solution of the system (3.1) with the boundary condition n(~) = ~ is shown in Fig. 6. The 
characteristic times corresponding to the start and end (t i and tf) of the transition from 
the regime of Fig. 5 to that of Fig. 6 can be estimated by equating the electric field of 
Fig. 5 to the fields E(~) and E(0) of Fig. 6: 

i = 0 .00~[2 ~lsec/H~ '12 ( ~'V~[G ), t~ = 0 . 0 0 1 5  ~$ec/floTT1'12 ( ~vIC- ). 

i. 

2. 

3. 

4. 
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LOSS OF EQUILIBRIUM AND THE QUASISTATIONARY STATE IN AN 

EXPANDING RECOMBINING PLASMA 

G. M. Zhinzhikov, G. A. Luk'yanov, 
and N. O. Pavlova 

UDC 533.9 

Many problems of modern gasdynamics and technical physics are concerned with thermody- 
namic nonequilibrium states of a medium and conditions with thermodynamic nonequilibrium 
states of a medium and conditions for obtaining the nonequilibrium state. A problem of this 
type, whose importance comes from its application to creation of effective plasma lasers [i], 
is the relaxation of a low-temperature plasma during an adiabatic expansion. The conditions 
for the loss of equilibrium are well-known for some typical situations in a plasma [2, 3]. 
As a rule these are situations when the cause of the loss of equilibrium is the steady-state 
effect of perturbing factors on the parameters of the problem. In the present paper we con- 
sider the loss of equilibrium in a nonsteady plasma. Criteria are obtained for the loss of 
ionization equilibrium, the equilibrium distribution of levels, and thermal equilibrium for 
the expansion of a plasma which is initially in equilibrium. We also study the closely re- 
lated conditions for a quasistationary occupation of the excited states in a recombining 
plasma. 
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